
GeSS
Release 0.6.0

Cec M

Mar 26, 2023

CONTENTS

1 Which module should you use? 3
1.1 Before you start . 3

1.1.1 Prerequisites . 3
1.1.2 Installation . 4
1.1.3 Important: Folders and files . 4

1.2 Jump Start . 5
1.3 First Steps . 5

1.3.1 Processing worflow of an imaging session . 5
1.3.2 Interactive mode . 6
1.3.3 Command line mode . 7
1.3.4 Multisession mode . 8

1.4 Advanced Use . 10
1.4.1 Loop mode . 10
1.4.2 Copyback mode . 11

1.5 Setting Options . 12
1.5.1 GeSS options files . 12
1.5.2 Setting gess.cfg . 13
1.5.3 Setting loop.cfg . 21
1.5.4 Setting copyback.cfg . 23

1.6 Files and Folders naming . 26
1.6.1 Preprocessed files . 26
1.6.2 Processed files . 26
1.6.3 Storage folders . 27

1.7 Use cases examples . 27
1.8 Python reference . 27

1.8.1 gess . 27
1.8.2 gess.common . 29
1.8.3 gess.utils . 36

Python Module Index 39

Index 41

i

ii

GeSS, Release 0.6.0

GeSS (Generate Siril Scripts) is a package built upon pySiril, a Python wrapper for Siril astronomical processing
software.

Its main purpose is to batch-process astrophotography sessions, somewhat like using Siril scripts or SiriLic, with
following features:

• gess can be used to generate on-the-fly new scripts by passing keywords or ticking a few boxes to modify your
usual processing workflow,

• gess can name Siril sequences based on info contained in your images headers, so that you resulting stacks have
meaningful names,

• gess can locate automatically masters from libraries based on the values in the FITS header of frames to be
calibrated,

• gess can crawl all your folders from the night before and capture anything that needs to be calibrated, registered
and stacked,

• gess can build all your master libraries if the clouds rolled in and you decided not to loose the night,

• gess can gather calibrated lights from multiple sessions, and then register/stack them.

Gess is based on fetching info from image headers and parsing them to recognize string patterns in your files and folders
names. As such, it is primarily intended for users with a repeatable acquisition process. Most likely using an imaging
software that nicely arrange frames in folders with a stable naming convention. Please also have a look at the section
regarding folders conventions.

Many options/preferences on how you want to process your files can be specified through configuration files. A dis-
claimer here: No fancy GUI except for settings! GeSS is intended for users who have some kind of drive towards
automation and command line. It you do not recognize yourself in these words, then probably GeSS will be more of a
burden than a help.

Knowing Python is not necessary, though it can prove useful if you want to re-use some modules of the package to
build your own scripts. After installing the package, just type gess in a shell to get some help on how to use it (or much
better, keep on reading these pages just a little bit longer).

CONTENTS 1

https://gitlab.com/free-astro/pysiril
https://www.siril.org/
https://gitlab.com/free-astro/sirilic

GeSS, Release 0.6.0

2 CONTENTS

CHAPTER

ONE

WHICH MODULE SHOULD YOU USE?

• Single sessions

– If you want to process a single imaging session, you should have a look at using GeSS in interactive or
command-line modes. Probably a good idea to follow the steps shown in the Jump Start section if this is
your first use.

– After you have processed a few sessions on the same target, you will want to gather and process them with
the multisession mode.

• Batch processing

– If you need to batch process multiple sessions from the same night, with multiple targets, filters or build
master libraries, you need to head to loop mode section.

– Once multiple sessions are batch-processed, you can reorganize the calibrated lights using copyback utility.

1.1 Before you start

1.1.1 Prerequisites

Before installing GeSS, you will need to install:

• a recent version of Python, 3.6 or above. Please note that versions 2.x are not supported.

• the latest version of Siril (1.0.0) or above.

Warning: For Windows users: Python and its scripts folder need to be in your PATH to be able to use GeSS.
Remember to enable this when installing Python for Windows (Add Python to your PATH). And please please, install
Python for all users when prompted to do so, to avoid any installation in obscure hidden folders only Windows would
know of.

The following Python packages will be installed/updated if not already present:

• pySiril (>=0.0.12)

• pySimpleGUI

• astropy

• pyexiv2

3

https://www.python.org/downloads/
https://siril.org/download/
https://gitlab.com/free-astro/pysiril
https://pysimplegui.readthedocs.io/en/latest/
https://www.astropy.org/
https://pypi.org/project/pyexiv2/

GeSS, Release 0.6.0

Warning: For Windows users: enable symbolic links by switching Windows to developper mode: head to
Windows 10 Settings > Update & Security > For Developers and select “Developer mode”.

1.1.2 Installation

If you want the latest release version:

• download the wheel from release page

• in a shell, type:

pip install gess-x.y.z-py3-none-any.whl

x.y.z being the version number of the release.

If you want to build from the sources using pip (requires setuptools and wheel packages):

pip install https://gitlab.com/free-astro/gess/-/archive/maindev/gess-master.tar.gz ␣
→˓ # stable version
pip install https://gitlab.com/free-astro/gess/-/archive/maindev/gess-maindev.tar.gz ␣
→˓ # dev version

1.1.3 Important: Folders and files

GeSS is built around the same philosophy as Siril standard scripts. Consequently, it follows the same convention. An
imaging session consists of a working directory (as you would set the home directory in Siril), containing at least a
subfolder with lights. It can also contain other subfolders with darks, flats and/or biases. The name you choose for all
these subfolders is up to you (or the imaging software you use) and can be configured through options. But this filing
architecture is mandatory for GeSS to work.

Example with NINA as imaging software:

A valid filename specifier could be
$$TARGETNAME$$\$$DATEMINUS12$$\$$IMAGETYPE$$\$$IMAGETYPE$$_$$FRAMENR$$
returning a file tree like this:

MyAstroPics
M31

2021-01-01
FLAT

FLAT_0001.FITS
FLAT_0002.FITS

LIGHT
LIGHT_0001.FITS
LIGHT_0002.FITS

2021-01-02

The LIGHT folder containing the light frames is a subfolder to MyAstroPics\M31\2021-01-01 which is the working
directory.

On the contrary, using this string specifier produces a non-valid file tree:
$$TARGETNAME$$\$$IMAGETYPE$$\$$DATEMINUS12$$\$$IMAGETYPE$$_$$FRAMENR$$

4 Chapter 1. Which module should you use?

https://gitlab.com/cissou8/gess/-/releases
https://pypi.org/project/setuptools/
https://pypi.org/project/wheel/

GeSS, Release 0.6.0

MyAstroPics
M31

FLAT
2021-01-01

FLAT_0001.FITS
FLAT_0002.FITS

2021-01-02
LIGHT

2021-01-01
LIGHT_0001.FITS
LIGHT_0002.FITS

2021-01-02

The LIGHT folder does not contain the light frames. There are located further down the tree inside the 2021-01-01
subfolder.

If you are already used to working with Siril, this should not be any news to you. And if you are new to Siril and want
to unleash the power of batch processing with GeSS, then, you will need to comply with this convention. . .

1.2 Jump Start

1.3 First Steps

1.3.1 Processing worflow of an imaging session

The most important module of GeSS is called gess.gessengine.

It goes through the whole processing workflow of an imaging session:

1. Locate the master frames to be applied to calibrate the light frames, whether there are in a library or need to be
processed first.

2. Start Siril and apply some user preferences (bitdepth, compression)

3. Prepare the masterframes if required or copy the masters from your masters libraries.

4. Preprocess the light frames (and possibly extract the Ha/OIII layers - OSC only).

5. Extract background.

6. Register.

7. Stack.

This workflow is the complete set of actions that gessengine can run. However, you don’t need to go through all the
steps. What actions are to be taken is fully configurable through a bunch of options that are passed to the module. Say,
if you want to stop just after lights are calibrated, just set the options accordingly and gessengine will stop there.

gessengine is optimized to avoid repeating steps, should you want to apply different processings to the same session. For
instance, it will store masters already stacked in masters subfolder and re-use them (see also the section about storage
folders). It will also try to avoid conversion and preprocessing steps if they have already been performed previously.

Warning: If you are trying different versions of masters for some testing of your liking, don’t forget to delete
masters and processxx folders before trying to process again your session!

1.2. Jump Start 5

GeSS, Release 0.6.0

Note: Important: Before trying to run GeSS in any kind of way, you need to have set gess default options.

1.3.2 Interactive mode

The simplest way is to process a single imaging session is to start gessengine in interactive mode:

From a shell:

gess -i

From Python:

from gess import gessi
success,res=gessi.Run()

This will:

• start a GUI to review the default options and to modify some of them if you wish. Press Validate when done.

• ask for the working directory,

6 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

• run the workflow.

1.3.3 Command line mode

If you prefer a more command line approach, you can call gessengine directly.

From a shell:

gess -e /MyAstroPics/M31/2021-01-01
gess -e /MyAstroPics/M31/2021-01-01 gess_altopt.cfg
gess -e /MyAstroPics/M31/2021-01-01 doHO=1 dostack=0
gess -e /MyAstroPics/M31/2021-01-01 gess_altopt.cfg doHO=1 dostack=0

From Python:

from gess import gessengine
from gess.common.options import options

#success,res=gessengine.Run(workdir,opt=None,app=None,dryrun=False)

success,res=gessengine.Run('/MyAstroPics/M31/2021-01-01')

opt=options(optiontype='gess',addcfgfile='gess_altopt.cfg').getoptions()
success,res=gessengine.Run('/MyAstroPics/M31/2021-01-01',opt)

myopts={
doHO = True,
dostack = False

}
opt=options(optiontype='gess',dictcfg=myopts).getoptions()
success,res=gessengine.Run('/MyAstroPics/M31/2021-01-01',opt)

opt=options(optiontype='gess',addcfgfile='gess_altopt.cfg',dictcfg=myopts).getoptions()
success,res=gessengine.Run('/MyAstroPics/M31/2021-01-01',opt)

• gess -e /MyAstroPics/M31/2021-01-01 runs gessengine in the folder /MyAstroPics/M31/2021-01-01. The wor-
flow is executed as per your default options.

• gess -e /MyAstroPics/M31/2021-01-01 gess_altopt.cfg does the same but updates the default options with the
values specified in gess_altopt.cfg. In the Python call, opt is a DictX instance containing additional options. Such
object can be easily built using the options class.

1.3. First Steps 7

GeSS, Release 0.6.0

This additional option file specifies some (or all of the) values to be updated. This can be handy if you want, for
instance, to modify the names of some folders. The example below shows what gess_altopt.cfg could modify if
your default options are set for imaging with NINA but you also shoot with APT. APT does have the same names
as NINA for light/flat/dark/bias folders, nor uses the same FITS extension.

{
"ext": "fit",
"lights": "LIGHTS",
"flats": "FLATS",
"darks": "DARKS",
"biases": "BIASES",

}

Other examples that come to mind are:

– specifying the location of master libraries if you use another camera. Default options could specify paths
for camera#1 and gess_cam2.cfg updates for camera#2,

– specifying the location of flats library if you use another telescope,

– specifying Ha/OIII extraction for sessions where you’ve used a dual narrowband filter, though this is easier
done with the 3rd syntax shown right below.

• gess -e /MyAstroPics/M31/2021-01-01 doHO=1 dostack=0 runs gessengine with updated options specified by
an ‘=’ sign. You can specify as many as you want though it is probably useful if you only change just a few
numerical values. Otherwise, the syntax shown above with an addtional file is probably more practical.

• gess -e /MyAstroPics/M31/2021-01-01 gess_altopt.cfg doHO=1 dostack=0 does the same, but updates first
with the additional file gess_altopt.cfg then with the values specified with an ‘=’ sign.

1.3.4 Multisession mode

Multisession mode is a “manual” mode for gathering preprocessed lights from multiple sessions. “Manual” means that
the user need to select one by one the folders to be merged. This can be useful is you have only a couple of sessions on
a target and not that many filters. If you want to process many sessions with many filters, you should probably turn to
Copyback mode.

To run multisession, from a shell:

gess -m

From Python:

from gess import gessmultisession

success,res=gessmultisession.Run()

The steps are as follows:

• Select a folder containing calibrated lights (if you have calibrated them using GeSS, the folder should be named
process16 or process32)

8 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

• Select the sequence that you want to use by entering its number:

In the example above, 52+52 files have been found because an Ha sequence from an Ha/OIII extraction was selected.
Multisession will automatically collect the OIII sequence as well, hence why there are 52+52 files.

• Indicate what you want to do with these images:

Multisession will then ask for a directory where to store the newly created sequence (cannot be one of the folders you
have already selected). It will proceed with copying the files and re-numbering them as required, and finally applying
the processing specified.

1.3. First Steps 9

GeSS, Release 0.6.0

1.4 Advanced Use

This section presents two more advanced modes. It is recommended to understand how gessengine works from the
First Steps section before using them.

1.4.1 Loop mode

Loop mode is intended for more advanced users. You will probably need to have processed sucessfully a few individual
sessions before jumping to this usage.

Note: Important: Before trying to run GeSS in loop mode, you need to have set loop default options.

Loop crawls your imaging folder and process all the FOLDERS (not files) with a specified string in their path. By
default, it will search for the date of the day before but you can also specify any string to search for (a previous date,
an object name etc. . .).

Loop will do the following:

• First identify all the folders containing calibration frames (darks, biases, flats) and light frames,

• Prepare masterframes if required in that order: biases, flats, darks

• Store them in your libraries (if you are working with libraries for some or all masters),

• Process all the light frames folders.

With this mode, you can therefore assemble all your masters libraries, process multiple sessions with multiple targets,
filters, exposures etc. . . with one single line of command.

In NINA (and most probably in other imaging software), you can specify this as the script to be executed at the end
of the session. You wake up the next morning to a handfull of processed images to review with your morning cup of
coffee.

To run loop, from a shell:

gess -l
gess -l gess_setup2.cfg
gess -l gess_setup2.cfg loop_setup2.cfg
gess -l searchstr=M31

From Python:

from gess import gessloop

success,res=gessloop.Run(addgesscfg='',addloopcfg='',searchstr='')

success,res=gessloop.Run()
success,res=gessloop.Run('gess_setup2.cfg')
success,res=gessloop.Run('gess_setup2.cfg','loop_setup2.cfg')
success,res=gessloop.Run(searchstr='M31')

• gess -l runs gessloop using default options from gess.cfg and loop.cfg, in the folders containing the date of the
day before.

• gess -l gess_setup2.cfg runs gessloop using default options from gess.cfg with addtional options from
gess_setup2.cfg.

10 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

• gess -l gess_setup2.cfg loop_setup2.cfg runs gessloop using default options from gess.cfg with addtional options
from gess_setup2.cfg and loop.cfg updated from loop_setup2.cfg.

• gess -l searchstr=M31 runs gessloop using default options from gess.cfg and loop.cfg, in the folders containing
the string M31 (so not necessarily a date).

Loop is set to go on through the different folders it should process and run till the end. If, along the way, some folder
processing fails, it will show in the summary and go on with processing the next folder. So please carefully review the
summary shown at the end of execution to make sure everything went as expected.

1.4.2 Copyback mode

Note: Important: Before trying to run copyback mode, you need to have set copyback default options.

This mode can be used to gather calibrated lights from multiple sessions in an automated way. Once you are done
imaging a target, all the calibrated lights are ready for final registration and stacking.

It is intended for users imaging sessions on the same targets overmultiple nights, with mutliple filters ans most im-
portantly with a repeatable acquisition process. If you want to gather sessions occasionally, you are better off using
Multisession mode.

To run copyback, from a shell:

gess -c
gess -c gess_setup2.cfg
gess -c gess_setup2.cfg loop_setup2.cfg 2021-01-02 copyback_setup2.cfg
gess -c searchstr=M31

From Python:

from gess import gesscopyback

success,res=copyback.Run(addgesscfg='',addloopcfg='',searchstr='',addcopybackcfg='')

success,res=gesscopyback.Run()
success,res=gesscopyback.Run('gess_setup2.cfg')
success,res=gesscopyback.Run('gess_setup2.cfg','loop_setup2.cfg','2021-01-02','copyback_
→˓setup2.cfg')
success,res=gesscopyback.Run(searchstr='M31')

• gess -c runs copyback using default options from gess.cfg, loop.cfg and copyback.cfg, in the folders containing
the date of the day before.

• gess -c gess_setup2.cfg runs copyback using default options from gess.cfg with addtional options from
gess_setup2.cfg.

• gess -c gess_setup2.cfg loop_setup2.cfg 2021-01-02 copyback_setup2.cfg runs copyback using default options
from gess.cfg, loop.cfg and copyback.cfg, complemented with options in gess_setup2.cfg, loop_setup2.cfg and
copyback_setup2.cfg. It searches the folders containing string “2021-01-02”.

• gess -c searchstr=M31 runs copyback using default options from gess.cfg, loop.cfg and copyback.cfg, in the
folders containing the string M31 (so not necessarily a date).

Note: Before copying a calibrated light in the destination folder, copyback will check if a file with the same DATE-OBS
FITS header key is present to avoid copying twice (or more) a file. It will also deal with incrementing the sequential

1.4. Advanced Use 11

GeSS, Release 0.6.0

number to avoid copying over an existing file.

1.5 Setting Options

At the very beginning, GeSS was a pure command line program. Over the time, efforts have been made to make it a
bit more user-friendly, though it is not intended to build a GUI to operate it. Since the point is to automate processing
a lot to run it mostly unattended, it would be stupid to ask the user to click on buttons all along the process.

That being said, GeSS works with options files, three of them for now. Setting these options can be a bit tedious, in
particular since it is going to be the first thing you will need to do before running anything. In order to ease the process,
small GUIs have been developped to assist you.

This section is an attempt at explaining in the clearest possible way what these options files need to specify and how.

So sit back, relax and keep on reading. . .

1.5.1 GeSS options files

There are three default options files that are mandatory:

• gess.cfg, which specifies preferences for your usual image processing worflow. This is required for processing a
session in Interactive mode or Command line mode, as well as gathering sessions with Multisession mode.

• loop.cfg, passing additional options required by Loop mode.

• copyback.cfg, passing additional options required by Copyback mode.

A clean version of these files is created the first time the package is loaded. The location where they are stored depends
on your OS:

• Windows: %USERPROFILE%\gess (copy this in Windows Search bar)

• Linux and Mac OS: /usr/home/gess

These files are written in JSON format, a human-readable format, editable in any text editor.

If you do not feel comfortable editing these files manually, you can open a graphical editor for each of these, by typing
one of the commands below:

gess -o # edit gess.cfg
gess -ol # edit loop.cfg
gess -oc # edit copyback.cfg

These are the three default files. But you can write as many as you want and store them in the same location.

The default files are supposed to reflect your typical worflow and preferences, the ones you would like to execute most
times. But if you are using multiple setups or multiple imaging software, you could create as many as required and call
them to process your different sessions. All the modules that use the default cfg files also accept additional cfg files.
Additional cfg can specify only a few values that differ from your default cfg or the whole set of options.

12 Chapter 1. Which module should you use?

https://www.json.org/json-en.html

GeSS, Release 0.6.0

1.5.2 Setting gess.cfg

This is the most important option file, as it defines your preferred processing worflow. This section lists all its keys and
values.

If you’ve chosen to edit via the GUI, you will need to type:

gess -o # edit gess.cfg

You will see that the different parameters are organized in 3 tabs:

• Preferences

• Processing

• Folders

as shown below.

Hovering above any of the fields will display tooltips.

Preferences

The Preferences tab gathers all the options regarding general preferences.

The values for each key is detailed in this table, in the order shown in the image above.

1.5. Setting Options 13

GeSS, Release 0.6.0

Key Type Value Comment
ext str fit/[fits]/fts/raw The extension of your FITS file as saved by your imaging software.

Special case for raw, see below.
shottype str cfa/mono The type of images, either cfa (color) or mono.
bitdepth int 16/32 The bitdepth to use in Siril, either 16b integer or 32b float.
seqasfitseq bool true/false If true, the fits are converted to a single multi-image container,

known as fitseq.
compression str Leave blank to use current settings from Siril. Otherwise, this should

be the string passed after setcompress command.
debug bool true/false If true, each module will save a *.log file keeping trace of Siril exe-

cution and module messages.
sirilexe str Leave blank to use Siril installed version. Specify a path to use a

development version instead.

Note:

Setting ext key to raw can be used for handling one special case: in case your imaging software also saves *.jpg or
other compressed format along with the raws for faster preview. In that case you must specify raw so that gess sends a
convertraw command instead of convert. Only raw files are selected for conversion.

When the raws have been converted, the FITS files will used a *.fit extension (no choice here).
Apart from this case, you can use one of the three FITS extensions even if you are shooting with a DSLR. The universal
convert command will handle this perfectly.

Processing

The Processing tab sets all the options regarding how you want to preprocess your images and which processing steps
you want to execute after calibration.

Table below gives the values and types for the different keys, in the order shown in the image above. Further explanation
is given right after.

14 Chapter 1. Which module should you use?

https://free-astro.org/index.php/Siril:Commands#setcompress
https://free-astro.org/index.php/Siril:Commands#convertraw
https://free-astro.org/index.php/Siril:Commands#convertraw

GeSS, Release 0.6.0

Key Type Value Comment
ppdark bool true/false If true, preprocess lights with darks
ppflat bool true/false If true, preprocess lights with flats
ppoffset bool true/false If true, preprocess flats with offsets
pplight bool true/false If true, preprocess lights
dobkg bool true/false If true, perform background extraction on preprocessed lights
doHO bool true/false If true, perform Ha/OIII extraction before registration
autoHOspec str A specifier string, such as FILTER=DualBand to automatically trig-

ger HO extraction
doregister bool true/false If true, perform registration
dostack bool true/false If true, perform stacking

• ppdark, if true, will instruct gessengine to do mainly two things:

– if you shoot darks along with each imaging session, it will stack them into a masterdark. This step is skipped
if you use a darks library.

– it instructs gessengine to preprocess the lights with the masterdark.

• Same applies to ppflat and ppoffset. Before stacking the flats, they will be calibrated by the masteroffset.
As substracting a masteroffset from flats is mandatory in the processing workflow, the GUI does not leave a choice
whether to set ppoffset to true or false. The value is determined from ppflat and is exposed for information only.

• pplight is always set to true via the GUI.

• dobkg, if true, will instruct gessengine to perform background extraction with a polynom of degree 1 after lights
calibration.

• doHO, if true, will instruct gessengine to perform Ha/OIII extraction. After this operation, two sequences are
passed to the next step.

• autoHOspec is a string specifier that will instruct gessengine to perform Ha/OIII extraction if the condition is
true. The specifier is formed as KEY=VALUE, where KEY is a valid FITS header key and VALUE is the value
that will trigger the extraction. The most obvious example would be FILTER=DualBand, meaning that if the
lights header contains the keyword FILTER and that it is set to DualBand then, the condition becomes true and
the Ha/OIII extraction is triggered. Warning: This specifier overides the doHO value defined above. Leave
empty to conform to the doHO switch.

• doregister, if true, will instruct gessengine to perform global registration.

• dostack, if true, will instruct gessengine to perform stacking. The parameters for this operation are the same
as in the standard Siril scripts. After stacking, if doHO is activated, the Ha and OIII stacked layers are linear
matched.

Folders

The Folders tab sets all the options regarding your filing system and conventions.

1.5. Setting Options 15

https://free-astro.org/index.php?title=Siril:Commands#seqsubsky
https://free-astro.org/index.php?title=Siril:Commands#seqextract_HAOIII
https://free-astro.org/index.php?title=Siril:Commands#seqextract_HAOIII
https://free-astro.org/index.php?title=Siril:Commands#register
https://free-astro.org/index.php?title=Siril:Commands#stack
https://free-astro.org/index.php?title=Siril:Commands#linear_match
https://free-astro.org/index.php?title=Siril:Commands#linear_match

GeSS, Release 0.6.0

Table below gives the values and types for the different keys, in the order shown in the image above. Further explanation
is given right after.

Key Type Value Comment
lights str subfolder Name of subfolder containing light frames, e.g. light or lights or raw

etc. . . .
lightsfmt str Optional name for the converted sequence
darks str subfolder or

path
Name of folder containing dark frames:
- either name of subfolder if you shoot darks with every session
- or full path to your masterdarks library

darksfmt str Name convention for masterdarks (for library only)
biases str subfolder or

path
Name of folder containing bias frames:
- either name of subfolder if you shoot biases with every session
- or an algebraic expression to use synthetic offsets
- or full path to your masterbiases library

biasesfmt str Name convention for masterbiases (for library only)
copymasters bool true/[false] If true, hardcopy the masters in the masters subfolder

• lights is pretty much self-explanatory. You should give here the name convention imposed by your imaging
software for the folder where the lights are stored, whether it is light or lights or raw etc. . .

• lightsfmt is the name that you want to give to the lights sequence (without extension). If left blank, the lights
will be converted to a sequence named after lights field. For instance, LIGHT_00001.fits, LIGHT_00002.fits
etc. . .
Now you could want to use some info contained in your lights header to parse a more meaningful name. In this
case, you can define here a format specifier. The full details on naming conventions are given in darksfmt.

Example:
A specifier like LIGHT_[OBJECT:s]_[DATE-OBS:dm12]_[TELESCOP:s]_[FILTER:s]_[EXPTIME:d]s would
result in your lights being converted to:
LIGHT_M31_2021-02-01_NEWT200F5_DualBand_300s_00001.fits etc
As this initial sequence name is then passed on to all the following sequences, the resulting stacked image will

16 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

also have this string embedded.

Warning: It can be handy to tag your sessions as shown above with a date field ([DATE-OBS:dm12]) if you
are shooting a target over one single night. But beware, if you are imaging over multiple nights, you will end
up with calibrated frames over different nights belonging to sequences with different names. This would prevent
multisession or copyback modes to properly gather shots from different nights.

• For darks and all the other calibration frames, the same philosophy applies:

– If you shoot them with every session, darks is a string giving the subfolder name, say “darks”, “dark”,
etc. . . as defined by your imaging software.

– If you want to use a darks library, tick the I’m using a darks library box. This will enable the Browse button.
Click on it and navigate to the folder containing your masters, confirm to save the location.
If you opt-in for the library method, you will need to define as well the darksfmt field, see below.

• For darksfmt and all other fmt fields, you need to specify the name convention to identify the masterdarks
adequate to process your lights. In the figure above, you can see for example:
DARK_[EXPTIME:d]s_G[GAIN:d]_O[OFFSET:d]_T[SET-TEMP:d]C_bin[XBINNING:d].fit

– all the terms between brackets are formed as follows: [KEY :fmt]

– KEY is any (valid) key from the lights FITS header

– fmt is a format specifier, such as d for integer, f for float or s for string.
For instance, [EXPTIME:d] will be parsed to 60 if the lights have been exposed for 60s. But would be
parsed to 60.0 if you specify [EXPTIME:0.1f].

– you can find all the keys of a FITS using Siril. Open a FITS file (a light for this example) and head to
Menu->Image Information-> FITS Header. It should display a window like this:

The framed values are the ones used in the fmt string: DARK_[EXPTIME:d]s_G[GAIN:d]_O[OFFSET:d]_T[SET-
TEMP:d]C_bin[XBINNING:d].fit
The corresponding masterdark name would be DARK_60s_G120_O30_T-10C_bin1.fit

– Table below recalls which FITS headers are read to parse the name of which master:

1.5. Setting Options 17

https://docs.python.org/3/library/string.html#format-specification-mini-language

GeSS, Release 0.6.0

Master reads header from
darks lights
flats lights
biases flats

– In order to parse a date from a date-time header key, you can use the special non-standard formatter dm12,
which means date minus 12h.
For instance, if in a header, the key DATE-LOC has a value of ‘2021-01-01T00:01:01.000’, [DATE-
LOC:dm12] would convert to ‘2020-12-31’, which was the date at the start of the night.
You can also use special formatter dm0 which will just parse the date, without substracting 12h.

– In order to parse RA and DEC info from OBJCTRA and OBJCTDEC header keys, you can use the special
non-standard formatter ra and dec.
For instance, if in a header, the keys OBJCTRA and OBJCTDEC have a value of ‘02 34 30 and ‘+61 23
07’ respectively, [OBJCTRA:ra]_[OBJCTDEC:dec] would convert to ‘02h34m30s_+61d23m07s’.

– There is no such thing as a FITS header for RAW images from a DSLR. However, some fields are still
extracted from exif data and converted to standard FITS header keys for you to tag your images:

∗ INSTRUME: the name of the camera

∗ ISOSPEED: the iso setting of the shot

∗ EXPTIME: the exposure time in s

∗ DATE-OBS: the date and time of the exposure

• biases are the only masters that accept a special string, in lieu of a path, to trigger the use of synthetic offsets.
More details about the values and formats to be used can be found in this tutorial.

• During the processing of a session, gess will create a masters folder within the working directory. This provides
a handy way to keep the masters once you are done processing a session. You can then simply delete the process
folder altogether and keep your working directory tidy.
copymasters is an option to make a hard copy, not a symlink, of each master coming from libraries in this masters
folder.
In case you want to process the same session later, all the masters are here, stored together the lights to be
calibrated, with the same versions as when the session was shot.
Note: For masters which are stacked during the processing of the session, so not from libraries, there is no choice,
they are hard-copied in the masters folder.

General notes on masters:

• You do not need to settle for an all-library or all-subfolder approach. Each calibration frame type can have its
own specification. The example above specifies libraries for darks and biases and subfolder for flats.

• All these values are read (or not) depending on the keys given for preprocessing (ppdark, ppflat and ppoffset).
For instance, if ppdark = false, it does not matter if there is something in darks and darksfmt. These values are
just ignored.
On the contrary, if ppdark = true, then there must be something specified at least in darks and possibly in
darksfmt.

For advanced users: using wildcards in mastersfmt

It could be that you want to use some key value in your masters name that do not match the key value in the frames to
be calibrated. With an example, it may be a bit clearer:
Say, you want, in your masterflats names, to keep record of their exposure time. Something like:
FLAT_1.32s_Halpha_G120_O30.fit.
If you put a field [EXPTIME:0.2f] in flatsfmt, it will end up with an error. Because the EXPTIME key will be read
from a light frame, not a flat. . .

18 Chapter 1. Which module should you use?

https://siril.org/tutorials/synthetic-biases/#and-now-what

GeSS, Release 0.6.0

There are 2 ways to deal with this situation:

• If you do not plan on using Loop mode to build your masters libraries, then just replace the token to be ignored
by a wildcard sign: *. In the flats example above, flatsfmt would become:
FLAT_*s_F[FILTER:s]_G[GAIN:d]_O[OFFSET:d].fit

• If you plan on using Loop mode for building libraries, then you cannot just ignore this altogether, as loop will
need this information to name your masters. You still need to make use of a wildcard character, but this time at
the start of the token.
In the flats example above, flatsfmt would become:
FLAT_[*EXPTIME:0.2f]s_F[FILTER:s]_G[GAIN:d]_O[OFFSET:d].fit

GUI buttons

The buttons at the bottom of the interface have the following effects:

• Clear all the entries for all the keys and restore defaults (mostly blank strings so beware! You
should get a warning before everything is cleared if case you have not saved before).

• Load an existing cfg file. You can use this either to load gess.cfg (the default file) or to load
another one to rework it.

• Save the current options as your new default. This will overwrite the current gess.cfg file. As
this one is particularly important, you will get a warning just to confirm this is indeed what you intend to do.

• Save the current options as another cfg file. This can be useful if you use different setups
or want to test alternative options without modifying your default. It is recommended to name it gess*.cfg to
recognise its type easily as there will be other types of option files in the same folder.

• Press print to display all the current values to the terminal. This is useful to find out the names
of the different options (you will not use the GUI forever and better start learning their names. . .).

• Run a test with the options as currently set in the interface. This will call gessengine in dryrun
mode. Meaning that only the folders checking and preferences passing is done. Gessengine will not go into all
the processing of the images but if this test is succesful, it could mean that you are almost acertained that this set
is valid.

If the test is validated, you will get a window proposing to save this set of options (so that you cannot forget). Save it
as gess.cfg to make it the new default or to an alternate name like with the Save As button.

If the test fails, you will get a window telling you where it went bad. Try to fix this re-reading this section and test
again.

1.5. Setting Options 19

GeSS, Release 0.6.0

gess.cfg JSON File

Once you’ve set these options through the graphical interface, you can always go to the options location and review
gess.cfg. (You could also modify it from there. . .) The file created by the GUI with the values shown in the figures
above will look like this:

{
"ext": "fits",
"shottype": "cfa",
"bitdepth": 32,
"seqasfitseq": false,
"compression": "",
"debug": true,
"sirilexe": "C:\\msys64\\mingw64\\bin\\siril-cli.exe",
"ppdark": true,
"ppflat": true,
"ppoffset": true,
"pplight": true,
"dobkg": true,
"doHO": false,
"autoHOspec": "FILTER=DualBand",
"doregister": true,
"dostack": true,
"lightsfmt": "LIGHT_[OBJECT:s]_[TELESCOP:s]_[FILTER:s]_[EXPTIME:d]s",
"lights": "LIGHT",
"darks": "C:\\Users\\Cisso\\Pictures\\Astro\\NINA\\Libraries\\Darks",
"darksfmt": "DARK_[EXPTIME:d]s_G[GAIN:d]_O[OFFSET:d]_T[SET-TEMP:d]C_bin[XBINNING:d].fit

→˓",
"flats": "C:\\Users\\cisso\\Pictures\\astro\\NINA\\Libraries\\Flats",
"flatsfmt": "FLAT_[DATE-LOC:dm12]_[TELESCOP:s]_[FILTER:s]_bin[XBINNING:d].fit",
"biases": "=64*$OFFSET",
"biasesfmt": "",
"copymasters": true

}

20 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

1.5.3 Setting loop.cfg

Setting this option file is required to use GeSS Loop mode. This section lists all its keys and values.
If you want to edit via the GUI, you can launch it with:

gess -ol # edit loop.cfg

Hovering above any of the fields will display tooltips.

Table below gives the values and types for the different keys, in the order shown in the image above. Further explanation
is given right after.

Key Type Value Comment
imagingfolder str the path where all your images are stored. Usually the same as de-

fined in your imaging software.
datefmt str %Y-%m-%d a format specifier to parse the date to be searched for.
darks2lib str If blank, uses gess.cfg darks settings. If subfolder is passed, all sub-

folders containing this string will be used to build new masterdarks
flats2lib str If blank, uses gess.cfg flats settings. If subfolder is passed, all sub-

folders containing this string will be used to build new masterflats
biases2lib str If blank, uses gess.cfg biases settings. If subfolder is passed, all sub-

folders containing this string will be used to build new masterbiases

• datefmt is used to parse the string that will be searched for in imagingfolder. Check the configuration from
your favorite imaging software.
This is used if you do not pass an argument searchstr= to gessloop. The date is then taken as the current date
minus 12h to find back the date at the start of last night session. And the date string is built according to datefmt.

Example:

Let’s assume that you have the following keys in loop.cfg and your imaging folder tree looks like this:

{
"imagingfolder": "C:\MyAstropics",
"datefmt": "%Y-%m-%d"

}

MyAstroPics
CaliforniaNebula

2021-01-03
RosetteNebula

03-01-2021
(continues on next page)

1.5. Setting Options 21

GeSS, Release 0.6.0

(continued from previous page)

M31_2021-01-02
M31_2021-01-03

Note: Hopefully your imaging folder will never look like this mess!

Now say you launch gessloop (gess -l) on Jan 4th in the morning.
The following folders will be crawled, searching for frames:

– MyAstroPics\CaliforniaNebula\2021-01-03

– MyAstroPics\M31_2021-01-03

If you want to process MyAstroPics\M31_2021-01-02 instead, you should use the command: gess -l
searchstr=2021-01-02

Finally, if you want to process MyAstroPics\RosetteNebula\03-01-2021, you should change datefmt to “%d-%m-
%Y”.

• darks2lib and all other 2lib keys are used to build automatically masters libraries. You can leave them blank if
you do not want to use this feature, although it is recommended to set these fields correctly in case you change
your mind later.
How it works: if you have a path to a darks library specified in gess.cfg (darks), you need to specify here the
name of the subfolder where individual darks are stored by your imaging software. While crawling the folders,
gessloop will detect these subfolders, stack the darks to new masterdarks and copy them to your darks library.

Example: with the following settings

– in gess.cfg (3rd tab - Processing):

– in loop.cfg:

All the darks found in subfolders DARK will be stacked and saved to:
C:\Users\cisso\Pictures\astro\NINA\Libraries\Darks.
The masterdarks are named according to the convention given in darksfmt:
DARK_[EXPTIME:d]s_G[GAIN:d]_O[OFFSET:d]_T[SET-TEMP:d]C_bin[XBINNING:d].fit

Note: If a version of the same masterdark (with same name) is already present in your library, the old version is
saved in subfolder ./previous with date and time appended. So that in case your new masterdark does not come out as
expected, you still have a back-up of the previous version to copy back in your library.

• the keyword lightsfmt from gess.cfg file, if defined, is used to create sets of lights, in case you can have lights
with different characteristics in the same folder (different exposures, different filters etc. . .).
For instance, if you have set lightsfmt to
“LIGHT_F[FILTER:s]_[EXPTIME:d]s_G[GAIN:d]_bin[XBINNING:d]”
gessloop will find subsets of lights based on this naming convention and create as many folders as required
to symlink copy the different kinds of lights before processing. This field is particularly useful to keep your
processed files organized if you plan to use Copyback on sessions with multiple filters.

Note: if you are working with masters libraries, the same applies to calibration files (darks, flats etc) without you
specifying anything. So if you plan to store more than one set of calibration frames in the same folder when you

22 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

shoot them (i.e. shooting multiple darks with different exposures during the same night and storing them in the
same folder), you should be using a library approach. Even if it is a temporary one.

loop.cfg JSON File

Once you’ve set these options through the graphical interface, you can always go to the options location and review
loop.cfg. (You could also modify it from there. . .) The file created by the GUI with the values shown in the figures
above will look like this:

{
"imagingfolder": "C:\\Users\\cisso\\Pictures\\astro\\NINA",
"datefmt": "%Y-%m-%d",
"darks2lib": "DARK",
"flats2lib": "",
"biases2lib": "BIAS",

}

1.5.4 Setting copyback.cfg

Setting this option file is required to use GeSS Copyback mode. This section lists all its keys and values.
If you want to edit via the GUI, you can launch it with:

gess -oc # edit copyback.cfg

Hovering above any of the fields will display tooltips.

Table below gives the values and types for the different keys, in the order shown in the image above. Further explanation
is given right after.

1.5. Setting Options 23

GeSS, Release 0.6.0

Key Type Value Comment
folderin str process The string to identify the folders to be searched for. Leave the default

value process if your sessions have bee processed with GeSS.
folderout str The string to build folders names. They can contain FITS headers

keys to be parsed (see below)
levelup int >0 The number of levels up to store your files (see below)
prefix str Any prefix you would like to add to the calibrated lights names
suffix str Any suffix you would like to add to the calibrated lights names
copyheader bool false If true, it will find the original uncalibrated light frame and copy its

full header to the calibrated frame.
useoriginal-
FITSname

bool false If true, it will replace the calibrated light frame name with that of the
orginal uncalibrated frame.

removepp bool false If true, it will remove the all the preprocessing prefixes (pp_,ppd_
etc. . .) from the calibrated frame name.

onefolder-
perseq

bool true If true, it will create one subfolder per sequence in folderout

• folderin is used to search your imaging folder as defined in loop.cfg file, for folders containing calibrated light
frames. Normally, you should leave the default value, i.e. process, as this is the folder base name into which
gessengine will store calibrated frames.

• folderout is used to generate a filing architecture from the top level folder where you want to store calibrated
frames. This can be a multiple level folder naming convention, mixing regular strings and FITS headers keys,
which will be parsed based on values found in the frames to copy.

• levelup is used to determine how many levels up it should go relative to the folder where the calibrated frames
are stored. Consider the following example:

MyPics
M31

NEWT200F5
2021-03-29

DualBand
LIGHT
LIGHT_M31_NEWT200F5_DualBand_180s
masters
process32

2021-03-30
DualBand

LIGHT
LIGHT_M31_NEWT200F5_DualBand_180s
masters
process32

2021-03-31
DualBand

LIGHT
LIGHT_M31_NEWT200F5_DualBand_180s
masters
process32

Calibrated
ppdfdeb_LIGHT_M31_NEWT200F5_DualBand_180s
ppdf_LIGHT_M31_NEWT200F5_DualBand_180s

24 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

The same target has been imaged over 3 nights and all the sessions have been processed with loop. Now, the aim is to
gather all the calibrated lights contained in each process32 folder to process all the lights together.
A sensible location would be at the same level as the dates folders. Considering the calibrated lights are in a process32
folder, one needs to go up 3 levels to land into NEWT200F5 folder. Then, if folderout is specified as "Calibrated" and
option onefolderperseq is set to True, copyback will:

• generate the Calibrated folder into NEWT200F5 directory.

• create one folder per calibrated sequence (calibrated sequences start with prefixes pp)

• copy the calibrated lights into the right folders.

• prefix and suffix are used to complement the names of the files copied. Values from FITS headers, if specified,
are parsed.

• copyheader is used to force the copy of the original (uncalibrated) light file in place of the header written by
Siril. Can be useful if you need to retain all the orginal info contained in the initial header.

• useoriginalFITSname is used to copy each calibrated light using the original filename instead of the (wonderful)
name generated by gess.

• removepp is used to tell copyback to remove the pp*_ prefix from the calibrated file names.

• onefolderperseq is used to generate one folder per sequence (see the example above).

Warning: Copyback options have been intentionally made very flexible so that you can virtually do whatever
you like when moving your calibrated files around. But with great flexibility comes great responsibility. Not all
combinations will lead to a filing system that can then be used to finalize the preocessing of your sessions.
For instance, refrain from specifying dates that will end up with non valid sequence names for Siril to process
afterwards. Please, think your naming conventions through to make sure files from different sources with same
sequence names do not end up mixed in a single folder.
One good practice is surely to use lightsfmt in gess.cfg with sufficient details to make sure you get unique sequence
names.

copyback.cfg JSON File

Once you’ve set these options through the graphical interface, you can always go to the options location and review
copyback.cfg. (You could also modify it from there. . .) The file created by the GUI with the values shown in the figures
above will look like this:

{
"folderin": "process",
"folderout": "Calibrated\[FILTER:s]",
"levelup": 3,
"prefix": "Cal_",
"suffix": "",
"copyheader": false,
"useoriginalFITSnames": false,
"removepp": false,
"onefolderperseq": true

}

1.5. Setting Options 25

GeSS, Release 0.6.0

1.6 Files and Folders naming

GeSS uses different names for sequences so that you can see at a glance which pre- and processing steps have been
applied.

1.6.1 Preprocessed files

After preprocessing, your calibrated lights (and sequence) should be named like this:

pp(d)(f)(deb)_(lights)_

• (d) is for darks substracted.

• (f) is for flats applied.

• (deb) is for debayering applied.

• (lights) is the name of the subfolder into which the lights are stored or the name specified by lightsfmt if you have
specified one.

Examples:

• ppdfdeb_light_.seq is the name of a sequence with both darks/flats preprocessing and debayering applied.

• ppddeb_light_.seq is same as above except you have asked to skip preprocessing with flats.

1.6.2 Processed files

As names of calibrated sequences are passed on to the next steps (background extraction, registration, stacking), you
can have different versions of processing on the same base sequence that coexist in the same folder.

At the end at the processing, result files are named as follows, again depending on the processing steps you have chosen
to perform:

(r_)(layer_)(bkg_)(preprocessedlight)_stacked.(ext)

• (r_) is for global resgistration applied.

• (layer_) is either Ha or OIII if layer extraction is applied (color shots only).

• (bkg_) is for background extrcation (linear gradient removed) applied.

• (preprocessedlights) is the string reflecting your preprocessing steps, see above.

• (ext) is the extension of your FITS files.

Examples:

r_Ha_bkg_ppdf_light_stacked.fits is the stacked output of a lights sequence, preprocessed with dark and flats, with Ha
layer and background, after being registered and stacked.

26 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

1.6.3 Storage folders

All along the process, gess will create the following folders to store intermediate and results files:

• masters: where all the masters are stored, whether thay have been copied from libraries or stacked on the spot.
Have a look at copymasters if you want to store a hard copy of masters coming from libraries.

• process(bd): storing intermediate files. bd is either 16 or 32 depending on chosen bitdepth.

• results(layer)(bd): storing the stacked files. layer is none for normal processing and HaOIII is you have asked
for Ha/OIII layers extraction.

Once you are happy with the single or multiple processings of your session, you can discard the process folder.

If you have also discarded the original calibration folders (darks, flats etc. . .) to save some space but have kept the
masters folder, it will act as a local master library if you come back later and want to process again the same session.

1.7 Use cases examples

1.8 Python reference

1.8.1 gess

gessengine

This module is the core module of GeSS, called by most other modules. It takes as input a working directory path
(similar to the working directory for launching a script in Siril) and a dictionnary specifying the options you want to
apply.

gess.gessengine.Run(workdir, opt=None, app=None, dryrun=False)

Parameters

• workdir (str) – the path to the working directory.

• opt (DictX, optional) – a DictX instance containing all the options for the processing
workflow described in the First Steps section, defaults to None. Can be formed as the options
member of an Options instance, with optiontype=’gess’. Have a look at gess.cfg settings for
a full description of all the options keys.

• app (Siril, optional) – a Siril class instance that can be used to call pySiril functions.
Pass None if it needs to be started, defaults to None.

• dryrun (bool, optional) – flag to stop engine just after starting Siril, if set to True. Used
mainly for checking that the options are passed correctly and that the masters can be found,
defaults to False.

Returns
(True if successful, dict with keys specifying inputs and outputs)

Return type

(bool,dict)

The bool is set to True is the processing was successful.

The dictionnary contains the following keys (if successful):

1.7. Use cases examples 27

GeSS, Release 0.6.0

• ’dark’: the masterdark that was used (if any)

• ’flat’: the masterflat that was used (if any)

• ’offset’: the masteroffset that was used (if any)

• ’workdir’: the path to the working directory

• ’options’: the options which were passed

• ’version’: gess version number

• ’log’: the path to the session log file if debug was on

Otherwise, if something wrong happened, the dictionnary contains a single key ‘messsage’ de-
tailing where the process failed.

gessi

This module is used to call interactively gess.gessengine. More help on its usage can be found in interactive mode
section.

It takes no input and returns the (bool,dict) tuple output by gessengine.

gessmultisession

This module is used to gather calibrated lights from multiple sessions, already processed with gess.gessengine.
More help on its usage can be found in multisession mode section.

It can take as input an additional gess-type cfg file (if you have used one for the lights calibration) and returns the
(bool,dict) tuple output by gessengine.

gess.gessmultisession.Run(addcfgfile='')
[summary]

Parameters
addcfgfile (str, optional) – the path to a gess-style additional cfg file, if one was used to
calibrate your lights, defaults to ‘’.

Returns
(True if successful, dict with keys specifying inputs and outputs)

Return type
(bool,dict)

see gess.gessengine for details on returned values.

gessloop

This module is used to batch-process multiple sessions by calling iteratively gess.gessengine. More help on its
usage can be found in loop mode section.

gess.gessloop.Run(addgesscfg='', addloopcfg='', searchstr='')
main function of gessloop.

Parameters

• addgesscfg – the path to a gess-style additional cfg file, defaults to ‘’.

• addloopcfg (str, optional) – the path to a loop-style additional cfg file, defaults to ‘’.

28 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

• searchstr (str, optional) – the string to be searched for in your imaging folder, defaults
to ‘’

Returns
(True if successful, dict with ‘message’ key summarizing the different folders processed)

Return type
(bool,dict)

gesscopyback

This module is used to copy calibrated lights around, most likely after having processed them with gess.gessloop.
More help on its usage can be found in copyback mode section.

gess.gesscopyback.Run(addgesscfg='', addloopcfg='', searchstr='', addcopybackcfg='')
main function of gesscopyback.

Parameters

• addgesscfg – the path to a gess-style additional cfg file, defaults to ‘’.

• addloopcfg (str, optional) – the path to a loop-style additional cfg file, defaults to ‘’.

• searchstr (str, optional) – the string to be searched for in your imaging folder, defaults
to ‘’

• addcopybackcfg (str, optional) – the path to a copyback-style additional cfg file, de-
faults to ‘’

Returns
(True if successful, dict with ‘log’,’in’ and ‘out’ keys listing files which have been copied)

Return type
(bool,dict)

1.8.2 gess.common

helpers

gess.common.helpers.checkcalibexists(calibtype, calibfolder, calibfmt, workdir, frames, ext, app=None)
Checks if a calibration library of a folder containing calibration frames to stack exists

Parameters

• calibtype (str) – the name of calibration frames, i.e. dark,flat or bias

• calibfolder (str) – either the path to the calibration frames library or the subfolder name
containing calibration frames to stack

• calibfmt (str) – the string to parse master frame name, containing str and FITS header
keys with format specifier e.g: “BIAS_O[OFFSET:d]_bin[XBINNING:d].fit”

• workdir (str) – the path to the working directory containing the session

• frames (str) – the string to identify the frames to be calibrated, typ. “light” or “flat”

• ext (str) – the extension of the frames to be calibrated

• app (Siril, optional) – a Siril class instance that can be used to call pySiril functions.
Pass None if it needs to be started, defaults to None

1.8. Python reference 29

GeSS, Release 0.6.0

Returns
(True if successful,True if the masters are in a library/False if they need to be stacked from the
session,full path to the masterframe if found in a library)

Return type
(bool,bool,str)

gess.common.helpers.checklocalcalibexists(calibtype, calibfolder, calibfmt, frames, ext, app=None)
Checks if a local copy of the master exists in the working directory (in the masters subfolder)

Parameters

• calibtype (str) – the name of calibration frames, i.e. dark,flat or bias

• calibfolder (str) – the path to the local calibration frames library

• calibfmt (str) – the string to parse master frame name, containing str and FITS header
keys with format specifier e.g: “BIAS_O[OFFSET:d]_bin[XBINNING:d].fit”

• frames (str) – the string to identify the frames to be calibrated, typ. “light” or “flat”

• ext (str) – the extension of the frames to be calibrated

• app (Siril, optional) – a Siril class instance that can be used to call pySiril functions.
Pass None if it needs to be started, defaults to None

Returns
(True if master exists, full path to the masterframe if found)

Return type
(bool,str)

gess.common.helpers.getfirstfile(folder)
Finds the first file of a folder with given extension

Parameters
folder (str) – the path to search

Returns
the path to the first file of the folder if one was found, an empty string otherwise

Return type
str

gess.common.helpers.parsemasterformat(masterfmt, hdr, refframe, mode='r', rmspace=True)
Parses the name of a master based on its formatting string and the header of the frame to calibrate

Parameters
masterfmt (str) – a string containing the format specification to parse the name.

All the string tokens between brackets will be parsed. The tokens are formed with: - HEADERKEY: a valid key
of the FITS header - fmt: a format specifier. Most of the time d, f or s should do.

You can have a look at https://docs.python.org/3/library/string.html#formatstrings

Special wildcard “*” character before HEADERKEY: If a HEADERKEY is suffixed with a wildcard character,
the string returned will change, depending on mode value:

• If mode=’r’: [*HEADERKEY:fmt] is replaced by *

• If mode=’w’: HEADERKEY is parsed

Parameters

30 Chapter 1. Which module should you use?

https://docs.python.org/3/library/string.html#formatstrings

GeSS, Release 0.6.0

• hdr (dict) – A dictionnary of refframe header keys, as returned by
pySiril.Addons::ReadFITSHeader

• refframe (str) – the name of the reference frame

• mode (str, optional) – either ‘r’ or ‘w’. Flag to handle behavior with wildcards, defaults
to ‘r’

• mode – Flag to remove spaces in the output string, defaults to True

Returns
the name of the file with header keys parsed as per specification.

Return type
str

gess.common.helpers.findmaster(workdir, master, masterfmt, refframe, app=None)
Looks for a suitable master for a given reference frame

Parameters

• workdir (str) – the path to the working directory containing the session

• master (str) – either the full path to the masters library or subfolder string wrt. workdir

• masterfmt (str) – check-out spec in parsemasterformat

• refframe (str) – the name of the reference frame

• app (Siril, optional) – a Siril class instance that can be used to call pySiril functions.
Pass None if it needs to be started, defaults to None

Returns
(True if the master was found,the full path to the master if one was found)

Return type
(bool,str)

gess.common.helpers.pathhasspace(folder)
Returns True if the path has spaces

Parameters
folder (str) – a path

Returns
True if the path has spaces

Return type
bool

gess.common.helpers.checksubfolder(workdir, subfolder)
Checks if a subfolder exists

Parameters

• workdir (str) – the path to the root folder to be searched

• subfolder (str) – the subfolder name to be found

Returns
(True if the subfolder exists,The full path to the subfolder)

Return type
(bool,str)

1.8. Python reference 31

GeSS, Release 0.6.0

gess.common.helpers.relativizepath(refframe, workdir)
Returns the path of a file relative to a given directory

Parameters

• refframe (str) – the path to a file

• workdir (str) – the path to a folder

Returns
the path of refframe relative to workdir, with all separators replaced with “/”

Return type
str

gess.common.helpers.fast_scandir(dirname)
Returns all the subfolders of a given path

Parameters
dirname (str) – the path to a folder

Returns
the list of all subpaths of dirname (full paths)

Return type
list(str)

gess.common.helpers.checkmastersubs(mastertype, masters, opt, subbydate, app=None, findsubsets=True,
follownaming='')

Returns all the subsets of masters in a path

Parameters

• mastertype (str) – a name to be used in print outs, giving the type of files being searched

• masters (str) – the last part of a path corresponding to these masters

• opt (DictX) – options member of an Options instance, with optiontype=’gess’

• subbydate (list(str)) – a set of folders to search

• app (Siril, optional) – a Siril class instance that can be used to call pySiril functions.
Pass None if it needs to be started, defaults to None

• findsubsets (bool, optional) – True if the headers of the files need to be verified to
identify unique sets of frames, defaults to True

• follownaming (str, optional) – the naming convention to be used to name the subsets,
defaults to ‘’

Returns
the list of all the subsets paths

Return type
list(str)

gess.common.helpers.checkmastersconfiguration(mastertype, opt, loop)
Checks the masters configuration as per loop spec

Parameters

• mastertype (str) – the types of masters being checked

• opt (DictX) – options member of an Options instance, with optiontype=’gess’

32 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

• loop (DictX) – options member of an Options instance, with optiontype=’loop’

Returns
(True if the check succeeded,True if the masters need to be stacked and copied to a library,the
final pathbit of the masters,the format to parse the masters names)

Return type
(bool,bool,str,str,str)

gess.common.helpers.masterstackingoptions(opt, mastertype, library=False)
Returns gess options with only one type of masters to be stacked

Parameters

• opt (DictX) – options member of an Options instance, with optiontype=’gess’

• mastertype (str) – the type of masters to be activated

• library (bool, optional) – True if the masters will be copied to a library. Activates 16b
with no compression. Defaults to False

Returns
options member of an Options instance, with optiontype=’gess’, with preprocessing and com-
pression options set to only stack one type of masters

Return type
DictX

gess.common.helpers.returninifolder(inifile, boxtitle=None)
Returns the last session working directory

Parameters

• inifile (str) – the path to gess.ini file

• boxtitle (str, optional) – The message to be displayed at the top of the folder chooser,
defaults to None

Returns
the path to the selected session folder. gess.ini is updated with the new path

Return type
str

gess.common.helpers.ReadSirilPrefs(app=None)
Reads Siril Preferences file

Parameters
app (Siril, optional) – a Siril class instance that can be used to call pySiril functions. Pass
None if it needs to be started, defaults to None, defaults to None

Returns
a dictionnary with Siril configuration

Return type
dict

gess.common.helpers.ParseSirilBDC(prefs=None, app=None)
Parses Siril bitdepth and compression settings

Parameters

• prefs (dict, optional) – a dictionnary containong Siril preferences. If None, pySiril
Addons::GetSirilPrefs() is called.

1.8. Python reference 33

GeSS, Release 0.6.0

• app (Siril, optional) – a Siril class instance that can be used to call pySiril functions.
Pass None if it needs to be started, defaults to None, defaults to None

Returns
a DictX with compression and bitdepth commands

Return type
DictX

gess.common.helpers.GetSirilBitDepth(prefs=None, app=None)
Returns Siril bitdepth preferences

Parameters

• prefs (dict, optional) – a dictionnary containong Siril preferences. If None, pySiril
Addons::GetSirilPrefs() is called.

• app (Siril, optional) – a Siril class instance that can be used to call pySiril functions.
Pass None if it needs to be started, defaults to None

Returns
“16” or “32”

Return type
str

gess.common.helpers.GetSirilRawExt()

Returns Siril list of RAW extensions

Returns
a list of valid extensions for raw format as returned by siril -f

Return type
list(str)

gess.common.helpers.ReadRawHeader(filename, validrawexts=None)
Read raw exif and returns a dictionnary with the following keys:

• INSTRUMEN: the name of the camera

• ISOSPEED: the iso setting of the shot

• EXPTIME: the exposure time in s

• DATE-LOC: the date and time of the exposure

Parameters

• filename (str) – full path to the raw file to read headers from.

• validrawexts (list(str)) – a list of valid raw files extensions, defaults to None

Returns
a dictionnary with keys listed above

Return type
dict

34 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

DictX

class gess.common.DictX.DictX

A overload of dict class that accepts dot assignment

Parameters
dict (dict) – a dictionnary

options

class gess.common.options.options(optiontype='gess', addcfgfile=None, dictcfg={}, updatedefault=False,
returnclean=False)

Class to handle options passed to gessengine, gessloop and copyback.

Default cfg file are stored in your user folder at ./gess/

This class is called at initialization of the package to create default cfg files if none is present:

• gess.cfg: the options for your typical worflow

• loop.cfg: additional options to use gessloop module

• copyback.cfg : additional options to use copyback module

Parameters

• optiontype (str, optional) – the type of options, either ‘gess’, ‘loop’ or ‘copyback’,
defaults to ‘gess’

• addcfgfile (str, optional) – an additional cfg file to read more options from on top of
default values, defaults to None

• dictcfg (dict, optional) – a dictionnary to read more options from on top of default
values, defaults to {}

• updatedefault (bool, optional) – Flag to update default cfg with the values passed,
defaults to False

• returnclean (bool, optional) – Flag to return a clean version of the options attribute
with all values to default, defaults to False

updateoptions_fromdict(optdict)
method to update the options attribute with values from a dictionnary. Checks the type of the entries to
make sure they match the types defined in the constructor.

Parameters
optdict (dict) – a dictionnary with values to update the options attribute

Returns
True if the update was successful

Return type
bool

updateoptions_fromfile(addcfg)
method to update the options attribute with values from a file.

Parameters
addcfg (str) – the path to a cfg file. Can be either a full path or a filename. If filename, it
is assummed to be located in the dame folder as the default cfgfile.

1.8. Python reference 35

GeSS, Release 0.6.0

Returns
True if the update was successful

Return type
bool

printoptions()

Print out all the keys and values of the options attribute

getoptions()

Return the options attribute

exportcfgfile(cfgfile='')
Export options attribute to a cfg file, selected by the user

Parameters
cfgfile (str, optional) – optional path to save the cfgfile. If empty, will open a SaveAs
window, defaults to ‘’

Returns
True if sucessfull

Return type
bool

importcfgfile(update=True)
Import options attribute from a cfg file, selected by the user

Parameters
update (bool, optional) – If True, the default cfg file is updated, defaults to True

Returns
True if sucessfull

Return type
bool

Logger

class gess.common.Logger.Logger(caller='gess_')
Class to log both to terminal and to .log file

Parameters
object (object) – object

1.8.3 gess.utils

SSFy

gess.utils.SSFy.Run(inputfilename='')
Analyzes a log generated by gess and returns all the commands that were passed in the form of a Siril ssf file.

Parameters
inputfilename (str, optional) – the path to a *.log file, defaults to ‘’.

If an empty string is passed, opens a file chooser to select the input file.

36 Chapter 1. Which module should you use?

GeSS, Release 0.6.0

Returns
(True if successful, dict with ‘message’ key)

Return type
(bool,dict)

CFGy

gess.utils.CFGy.Run(inputfilename='')
Analyzes a log generated by gessengine and returns the options in the form of a cfg file

Parameters
inputfilename (str, optional) – the path to a *.log file, defaults to ‘’.

If an empty string is passed, opens a file chooser to select the input file.

Returns
(True if successful, dict with ‘message’ key)

Return type
(bool,dict)

1.8. Python reference 37

GeSS, Release 0.6.0

38 Chapter 1. Which module should you use?

PYTHON MODULE INDEX

g
gess.common.helpers, 29
gess.gesscopyback, 29
gess.gessengine, 27
gess.gessi, 28
gess.gessloop, 28
gess.gessmultisession, 28
gess.utils.CFGy, 37
gess.utils.SSFy, 36

39

GeSS, Release 0.6.0

40 Python Module Index

INDEX

C
checkcalibexists() (in module

gess.common.helpers), 29
checklocalcalibexists() (in module

gess.common.helpers), 30
checkmastersconfiguration() (in module

gess.common.helpers), 32
checkmastersubs() (in module gess.common.helpers),

32
checksubfolder() (in module gess.common.helpers),

31

D
DictX (class in gess.common.DictX), 35

E
exportcfgfile() (gess.common.options.options

method), 36

F
fast_scandir() (in module gess.common.helpers), 32
findmaster() (in module gess.common.helpers), 31

G
gess.common.helpers

module, 29
gess.gesscopyback

module, 29
gess.gessengine

module, 27
gess.gessi

module, 28
gess.gessloop

module, 28
gess.gessmultisession

module, 28
gess.utils.CFGy

module, 37
gess.utils.SSFy

module, 36
getfirstfile() (in module gess.common.helpers), 30

getoptions() (gess.common.options.options method),
36

GetSirilBitDepth() (in module
gess.common.helpers), 34

GetSirilRawExt() (in module gess.common.helpers),
34

I
importcfgfile() (gess.common.options.options

method), 36

L
Logger (class in gess.common.Logger), 36

M
masterstackingoptions() (in module

gess.common.helpers), 33
module

gess.common.helpers, 29
gess.gesscopyback, 29
gess.gessengine, 27
gess.gessi, 28
gess.gessloop, 28
gess.gessmultisession, 28
gess.utils.CFGy, 37
gess.utils.SSFy, 36

O
options (class in gess.common.options), 35

P
parsemasterformat() (in module

gess.common.helpers), 30
ParseSirilBDC() (in module gess.common.helpers), 33
pathhasspace() (in module gess.common.helpers), 31
printoptions() (gess.common.options.options

method), 36

R
ReadRawHeader() (in module gess.common.helpers), 34
ReadSirilPrefs() (in module gess.common.helpers),

33

41

GeSS, Release 0.6.0

relativizepath() (in module gess.common.helpers),
31

returninifolder() (in module gess.common.helpers),
33

Run() (in module gess.gesscopyback), 29
Run() (in module gess.gessengine), 27
Run() (in module gess.gessloop), 28
Run() (in module gess.gessmultisession), 28
Run() (in module gess.utils.CFGy), 37
Run() (in module gess.utils.SSFy), 36

U
updateoptions_fromdict()

(gess.common.options.options method), 35
updateoptions_fromfile()

(gess.common.options.options method), 35

42 Index

	Which module should you use?
	Before you start
	Prerequisites
	Installation
	Important: Folders and files

	Jump Start
	First Steps
	Processing worflow of an imaging session
	Interactive mode
	Command line mode
	Multisession mode

	Advanced Use
	Loop mode
	Copyback mode

	Setting Options
	GeSS options files
	Setting gess.cfg
	Preferences
	Processing
	Folders
	GUI buttons
	gess.cfg JSON File

	Setting loop.cfg
	loop.cfg JSON File

	Setting copyback.cfg
	copyback.cfg JSON File

	Files and Folders naming
	Preprocessed files
	Processed files
	Storage folders

	Use cases examples
	Python reference
	gess
	gessengine
	gessi
	gessmultisession
	gessloop
	gesscopyback

	gess.common
	helpers
	DictX
	options
	Logger

	gess.utils
	SSFy
	CFGy

	Python Module Index
	Index

